Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.730
Filtrar
1.
Biomed Mater ; 19(3)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38626780

RESUMEN

Wool derived keratin, due to its demonstrated ability to promote bone formation, has been suggested as a potential bioactive material for implant surfaces. The aim of this study was to assess the effects of keratin-coated titanium on osteoblast functionin vitroand bone healingin vivo. Keratin-coated titanium surfaces were fabricated via solvent casting and molecular grafting. The effect of these surfaces on the attachment, osteogenic gene, and osteogenic protein expression of MG-63 osteoblast-like cells were quantifiedin vitro. The effect of these keratin-modified surfaces on bone healing over three weeks using an intraosseous calvaria defect was assessed in rodents. Keratin coating did not affect MG-63 proliferation or viability, but enhanced osteopontin, osteocalcin and bone morphogenetic expressionin vitro. Histological analysis of recovered calvaria specimens showed osseous defects covered with keratin-coated titanium had a higher percentage of new bone area two weeks after implantation compared to that in defects covered with titanium alone. The keratin-coated surfaces were biocompatible and stimulated osteogenic expression in adherent MG-63 osteoblasts. Furthermore, a pilot preclinical study in rodents suggested keratin may stimulate earlier intraosseous calvaria bone healing.


Asunto(s)
Regeneración Ósea , Proliferación Celular , Materiales Biocompatibles Revestidos , Queratinas , Osteoblastos , Osteogénesis , Cráneo , Titanio , Titanio/química , Osteoblastos/efectos de los fármacos , Osteoblastos/citología , Osteoblastos/metabolismo , Regeneración Ósea/efectos de los fármacos , Animales , Queratinas/química , Queratinas/metabolismo , Humanos , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Proliferación Celular/efectos de los fármacos , Cráneo/efectos de los fármacos , Cráneo/lesiones , Osteogénesis/efectos de los fármacos , Ratas , Propiedades de Superficie , Masculino , Línea Celular , Adhesión Celular/efectos de los fármacos , Ensayo de Materiales , Supervivencia Celular/efectos de los fármacos , Ratas Sprague-Dawley
2.
Nat Commun ; 15(1): 3283, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637507

RESUMEN

While poly(ethylene glycol) (PEG) hydrogels are generally regarded as biologically inert blank slates, concerns over PEG immunogenicity are growing, and the implications for tissue engineering are unknown. Here, we investigate these implications by immunizing mice against PEG to stimulate anti-PEG antibody production and evaluating bone defect regeneration after treatment with bone morphogenetic protein-2-loaded PEG hydrogels. Quantitative analysis reveals that PEG sensitization increases bone formation compared to naive controls, whereas histological analysis shows that PEG sensitization induces an abnormally porous bone morphology at the defect site, particularly in males. Furthermore, immune cell recruitment is higher in PEG-sensitized mice administered the PEG-based treatment than their naive counterparts. Interestingly, naive controls that were administered a PEG-based treatment also develop anti-PEG antibodies. Sex differences in bone formation and immune cell recruitment are also apparent. Overall, these findings indicate that anti-PEG immune responses can impact tissue engineering efficacy and highlight the need for further investigation.


Asunto(s)
Materiales Biocompatibles , Ingeniería de Tejidos , Femenino , Masculino , Ratones , Animales , Materiales Biocompatibles/farmacología , Osteogénesis , Regeneración Ósea , Polietilenglicoles/farmacología , Hidrogeles/farmacología
3.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 243-248, 2024 Mar 20.
Artículo en Chino | MEDLINE | ID: mdl-38645860

RESUMEN

Bacterial cellulose (BC) is a type of extracellular polymeric nanomaterial secreted by microorganisms over the course of their growth. It has gained significant attention in the field of bone tissue engineering due to its unique structure of three-dimensional fibrous network, excellent biocompatibility, biodegradability, and exceptional mechanical properties. Nevertheless, BC still has some weaknesses, including low osteogenic activity, a lack of antimicrobial properties, small pore size, issues with the degradation rate, and a mismatch in bone tissue regeneration, limiting its standalone use in the field of bone tissue engineering. Therefore, the modification of BC and the preparation of BC composite materials have become a recent research focus. Herein, we summarized the relationships between the production, modification, and bone repair applications of BC. We introduced the methods for the preparation and the modification of BC. Additionally, we elaborated on the new advances in the application of BC composite materials in the field of bone tissue engineering. We also highlighted the existing challenges and future prospects of BC composite materials.


Asunto(s)
Materiales Biocompatibles , Celulosa , Ingeniería de Tejidos , Ingeniería de Tejidos/métodos , Celulosa/química , Materiales Biocompatibles/química , Humanos , Huesos/metabolismo , Andamios del Tejido/química , Regeneración Ósea/efectos de los fármacos , Bacterias/metabolismo , Animales , Osteogénesis/efectos de los fármacos
4.
Mar Drugs ; 22(4)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38667777

RESUMEN

Desirable characteristics of electrospun chitosan membranes (ESCM) for guided bone regeneration are their nanofiber structure that mimics the extracellular fiber matrix and porosity for the exchange of signals between bone and soft tissue compartments. However, ESCM are susceptible to swelling and loss of nanofiber and porous structure in physiological environments. A novel post-electrospinning method using di-tert-butyl dicarbonate (tBOC) prevents swelling and loss of nanofibrous structure better than sodium carbonate treatments. This study aimed to evaluate the hypothesis that retention of nanofiber morphology and high porosity of tBOC-modified ESCM (tBOC-ESCM) would support more bone mineralization in osteoblast-fibroblast co-cultures compared to Na2CO3 treated membranes (Na2CO3-ESCM) and solution-cast chitosan solid films (CM-film). The results showed that only the tBOC-ESCM retained the nanofibrous structure and had approximately 14 times more pore volume than Na2CO3-ESCM and thousands of times more pore volume than CM-films, respectively. In co-cultures, the tBOC-ESCM resulted in a significantly greater calcium-phosphate deposition by osteoblasts than either the Na2CO3-ESCM or CM-film (p < 0.05). This work supports the study hypothesis that tBOC-ESCM with nanofiber structure and high porosity promotes the exchange of signals between osteoblasts and fibroblasts, leading to improved mineralization in vitro and thus potentially improved bone healing and regeneration in guided bone regeneration applications.


Asunto(s)
Fosfatos de Calcio , Quitosano , Técnicas de Cocultivo , Fibroblastos , Nanofibras , Osteoblastos , Osteoblastos/efectos de los fármacos , Quitosano/química , Fibroblastos/efectos de los fármacos , Porosidad , Nanofibras/química , Fosfatos de Calcio/química , Animales , Regeneración Ósea/efectos de los fármacos , Ratones , Andamios del Tejido/química , Carbonatos/química , Calcificación Fisiológica/efectos de los fármacos
5.
Pol Merkur Lekarski ; 52(2): 171-177, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38642352

RESUMEN

OBJECTIVE: Aim: The purpose of the study was to determine the features of the expression of T-lymphocytes, B-lymphocytes, macrophages in the post-traumatic regenerate of the mandible rats under conditions of filling a bone defect with hydroxyapatite-containing osteotropic material and thymalin injecting the surrounding soft tissues. PATIENTS AND METHODS: Materials and Methods: An experiment was conducted on 48 mature rats of the WAG population weighing 160-180 grams. Four groups were formed. Group 1 included 12 rats with a simulated holey defect in the lower jaw. Group 2 included 12 rats with a simulated holey defect in the lower jaw followed by its closure with hydroxyapatite-containing osteotropic material (bone graft "Biomin GT"). Group 3 included 12 rats with a simulated holey defect in the lower jaw with injecting the surrounding soft tissues with thymalin. Group 4 included 12 rats with a simulated holey defect in the lower jaw followed by its closure with hydroxyapatite-containing osteotropic material (bone graft "Biomin GT") and injecting the surrounding soft tissues with thymalin. The material for the morphological study was a fragment of the lower jaw from the area of the simulated holey defect. An immunohistochemical study was aperformed using monoclonal antibodies to CD68, CD20, CD163, CD86, CD3. RESULTS: Results: A comprehensive experimental and morphological study conducted by the authors revealed that thymalin injection of the soft tissues surrounding the bone defect of the lower jaw, filled with hydroxyapatite-containing osteotropic material "Biomin GT", stimulates local immune reactions in the post-traumatic regenerate, which is manifested, firstly, by an increase in the number T-lymphocytes on the 3rd day of the experiment and their increase up to the 28th day; secondly, by increasing the number of B-lymphocytes on the 14th day of the experiment with their further increase up to the 28th day; thirdly, by increasing the number of macrophages on the 3rd day of the experiment and their growth up to the 28th day; fourth, changes in macrophages phenotypes (decrease in the number of M1-macrophages and increase in the number of M2-macrophages). CONCLUSION: Conclusions: Stimulation of local immune reactions in the post-traumatic regenerate can be one of the mechanisms that activate reparative osteogenesis in the lower jaw of rats under the conditions of filling bone defects with hydroxyapatite-containing osteotropic material "Biomin GT" and thymalin injecting the surrounding soft tissues.


Asunto(s)
Regeneración Ósea , Durapatita , Hormonas del Timo , Ratas , Animales , Linfocitos T , Mandíbula , Linfocitos B
6.
ACS Appl Mater Interfaces ; 16(15): 18658-18670, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38587811

RESUMEN

Three-dimensional (3D)-printed biodegradable polymer scaffolds are at the forefront of personalized constructs for bone tissue engineering. However, it remains challenging to create a biological microenvironment for bone growth. Herein, we developed a novel yet feasible approach to facilitate biomimetic mineralization via self-adaptive nanotopography, which overcomes difficulties in the surface biofunctionalization of 3D-printed polycaprolactone (PCL) scaffolds. The building blocks of self-adaptive nanotopography were PCL lamellae that formed on the 3D-printed PCL scaffold via surface-directed epitaxial crystallization and acted as a linker to nucleate and generate hydroxyapatite crystals. Accordingly, a uniform and robust mineralized layer was immobilized throughout the scaffolds, which strongly bound to the strands and had no effect on the mechanical properties of the scaffolds. In vitro cell culture experiments revealed that the resulting scaffold was biocompatible and enhanced the proliferation and osteogenic differentiation of mouse embryolous osteoblast cells. Furthermore, we demonstrated that the resulting scaffold showed a strong capability to accelerate in vivo bone regeneration using a rabbit bone defect model. This study provides valuable opportunities to enhance the application of 3D-printed scaffolds in bone repair, paving the way for translation to other orthopedic implants.


Asunto(s)
Osteogénesis , Andamios del Tejido , Ratones , Animales , Conejos , Andamios del Tejido/química , Biomimética , Regeneración Ósea , Poliésteres/química , Ingeniería de Tejidos , Impresión Tridimensional
7.
ACS Appl Mater Interfaces ; 16(15): 19391-19410, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38591172

RESUMEN

Nowadays, bone systems have a series of consequences that compromise the quality of life mainly due to wear and decreased bioactivity, generally in elderly people and children. In this context, the combination of montmorillonite (MMT-NPs) in a vitreous system such as nanobioglass facilitates the adsorption of biomolecules on the surface and within the interlamellar spaces, enabling the entry of ions by a cation exchange process focusing on increasing the rate of bone formation. This work aims to synthesize and characterize an eco-friendly hybrid reinforcement containing MMT-NPs with nanobioglass doped with magnesium nanoparticles (MgNPs-BV). In this way, MMT-NPs@MgNPs-BV was synthesized by the impregnation method, where an experimental design was used to verify the synthesis conditions. The ideal condition by experimental design was carried out in terms of the characterization and biological activity, where we demonstrated MMT-NPs of 30% w w-1, MgNPs-BV of 6% w w-1, and a calcination temperature of 1273.15 K with a cell viability around 66.87%, an average crystallite diameter of 12.5 nm, and a contact angle of 17.7°. The characterizations confirmed the impregnation method with an average particle size of 51.4 ± 13.1 nm. The mechanical tests showed a hardness of 2.6 GPa with an apparent porosity of 22.2%, similar to human bone. MMT-NPs@MgNPs-BV showed a cell proliferation of around 96% in osteoblastic cells (OFCOL II), with the formation of the apatite phase containing a relation of Ca/P of around 1.63, a biodegradability of 82%, and rapid release of ions with a Ca/P ratio of 1.42. Therefore, the eco-friendly hybrid reinforcement with MMT-NPs and MgNPs-BV shows potential for application with a matrix for biocompatible nanocomposites for bone regeneration.


Asunto(s)
Bentonita , Nanopartículas , Niño , Humanos , Anciano , Calidad de Vida , Regeneración Ósea , Iones
8.
Int J Mol Sci ; 25(7)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38612687

RESUMEN

Dimethyloxalylglycine (DMOG) has been found to stimulate osteogenesis and angiogenesis of stem cells, promoting neo-angiogenesis in bone tissue regeneration. In this review, we conducted a comprehensive search of the literature to investigate the effects of DMOG on osteogenesis and bone regeneration. We screened the studies based on specific inclusion criteria and extracted relevant information from both in vitro and in vivo experiments. The risk of bias in animal studies was evaluated using the SYRCLE tool. Out of the 174 studies retrieved, 34 studies met the inclusion criteria (34 studies were analyzed in vitro and 20 studies were analyzed in vivo). The findings of the included studies revealed that DMOG stimulated stem cells' differentiation toward osteogenic, angiogenic, and chondrogenic lineages, leading to vascularized bone and cartilage regeneration. Addtionally, DMOG demonstrated therapeutic effects on bone loss caused by bone-related diseases. However, the culture environment in vitro is notably distinct from that in vivo, and the animal models used in vivo experiments differ significantly from humans. In summary, DMOG has the ability to enhance the osteogenic and angiogenic differentiation potential of stem cells, thereby improving bone regeneration in cases of bone defects. This highlights DMOG as a potential focus for research in the field of bone tissue regeneration engineering.


Asunto(s)
Aminoácidos Dicarboxílicos , Enfermedades Óseas Metabólicas , Osteogénesis , Animales , Humanos , Regeneración Ósea , Células Madre
9.
Int J Mol Sci ; 25(7)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38612693

RESUMEN

Low-intensity pulsed ultrasound (LIPUS) is a form of ultrasound that utilizes low-intensity pulsed waves. Its effect on bones that heal by intramembranous ossification has not been sufficiently investigated. In this study, we examined LIPUS and the autologous bone, to determine their effect on the healing of the critical-size bone defect (CSBD) of the rat calvaria. The bone samples underwent histological, histomorphometric and immunohistochemical analyses. Both LIPUS and autologous bone promoted osteogenesis, leading to almost complete closure of the bone defect. On day 30, the bone volume was the highest in the autologous bone group (20.35%), followed by the LIPUS group (19.12%), and the lowest value was in the control group (5.11%). The autologous bone group exhibited the highest intensities of COX-2 (167.7 ± 1.1) and Osx (177.1 ± 0.9) expression on day 30. In the LIPUS group, the highest intensity of COX-2 expression was found on day 7 (169.7 ±1.6) and day 15 (92.7 ± 2.2), while the highest Osx expression was on day 7 (131.9 ± 0.9). In conclusion, this study suggests that LIPUS could represent a viable alternative to autologous bone grafts in repairing bone defects that are ossified by intramembranous ossification.


Asunto(s)
Procedimientos de Cirugía Plástica , Animales , Ratas , Ciclooxigenasa 2/genética , Regeneración Ósea , Osteogénesis , Ondas Ultrasónicas
10.
Int J Nanomedicine ; 19: 3275-3293, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38601348

RESUMEN

Purpose: This study aims to explore a novel scaffold for osteotendinous junction regeneration and to preliminarily verify its osteogenic and tenogenic abilities in vitro. Methods: A polycaprolactone (PCL) scaffold with aligned and orthogonal fibers was created using melt electrowriting (MEW) and fused deposition modeling (FDM). The scaffold was coated with Type I collagen, and hydroxyapatite was carefully added to separate the regions intended for bone and tendon regeneration, before being rolled into a cylindrical shape. Human adipose-derived stem cells (hADSCs) were seeded to evaluate viability and differentiation. Scaffold characterization was performed with Scanning Electron Microscope (SEM). Osteogenesis was assessed by alkaline phosphatase (ALP) and Alizarin red staining, while immunostaining and transcription-quantitative polymerase chain reaction (RT-qPCR) evaluated osteogenic and tendogenic markers. Results: Scaffolds were developed in four variations: aligned (A), collagen-coated aligned (A+C), orthogonal (O), and mineral-coated orthogonal (O+M). SEM analysis confirmed surface morphology and energy-dispersive X-ray spectroscopy (EDS) verified mineral coating on O+M types. Hydrophilicity and mechanical properties were optimized in modified scaffolds, with A+C showing increased tensile strength and O+M improved in compression. hADSCs demonstrated good viability and morphology across scaffolds, withO+M scaffolds showing higher cell proliferation and osteogenic potential, and A and A+C scaffolds supporting tenogenic differentiation. Conclusion: This study confirms the potential of a novel PCL scaffold with distinct regions for osteogenic and tenogenic differentiation, supporting the regeneration of osteotendinous junctions in vitro.


Asunto(s)
Biomimética , Andamios del Tejido , Humanos , Andamios del Tejido/química , Osteogénesis , Poliésteres/química , Durapatita/farmacología , Durapatita/química , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Diferenciación Celular , Regeneración Ósea
11.
Int J Oral Sci ; 16(1): 31, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627392

RESUMEN

Accumulating evidence has demonstrated that apoptotic vesicles (apoVs) derived from mesenchymal stem cells (MSCs; MSC-apoVs) are vital for bone regeneration, and possess superior capabilities compared to MSCs and other extracellular vesicles derived from MSCs (such as exosomes). The osteoinductive effect of MSC-apoVs is attributed to their diverse contents, especially enriched proteins or microRNAs (miRNAs). To optimize their osteoinduction activity, it is necessary to determine the unique cargo profiles of MSC-apoVs. We previously established the protein landscape and identified proteins specific to MSC-apoVs. However, the features and functions of miRNAs enriched in MSC-apoVs are unclear. In this study, we compared MSCs, MSC-apoVs, and MSC-exosomes from two types of MSC. We generated a map of miRNAs specific to MSC-apoVs and identified seven miRNAs specifically enriched in MSC-apoVs compared to MSCs and MSC-exosomes, which we classified as apoV-specific miRNAs. Among these seven specific miRNAs, hsa-miR-4485-3p was the most abundant and stable. Next, we explored its function in apoV-mediated osteoinduction. Unexpectedly, hsa-miR-4485-3p enriched in MSC-apoVs inhibited osteogenesis and promoted adipogenesis by targeting the AKT pathway. Tailored apoVs with downregulated hsa-miR-4485-3p exhibited a greater effect on bone regeneration than control apoVs. Like releasing the brake, we acquired more powerful osteoinductive apoVs. In summary, we identified the miRNA cargos, including miRNAs specific to MSC-apoVs, and generated tailored apoVs with high osteoinduction activity, which is promising in apoV-based therapies for bone regeneration.


Asunto(s)
Exosomas , Vesículas Extracelulares , MicroARNs , MicroARNs/genética , Vesículas Extracelulares/metabolismo , Exosomas/genética , Exosomas/metabolismo , Regeneración Ósea , Osteogénesis
12.
J Nanobiotechnology ; 22(1): 185, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627717

RESUMEN

Rare earth nanomaterials (RE NMs), which are based on rare earth elements, have emerged as remarkable biomaterials for use in bone regeneration. The effects of RE NMs on osteogenesis, such as promoting the osteogenic differentiation of mesenchymal stem cells, have been investigated. However, the contributions of the properties of RE NMs to bone regeneration and their interactions with various cell types during osteogenesis have not been reviewed. Here, we review the crucial roles of the physicochemical and biological properties of RE NMs and focus on their osteogenic mechanisms. RE NMs directly promote the proliferation, adhesion, migration, and osteogenic differentiation of mesenchymal stem cells. They also increase collagen secretion and mineralization to accelerate osteogenesis. Furthermore, RE NMs inhibit osteoclast formation and regulate the immune environment by modulating macrophages and promote angiogenesis by inducing hypoxia in endothelial cells. These effects create a microenvironment that is conducive to bone formation. This review will help researchers overcome current limitations to take full advantage of the osteogenic benefits of RE NMs and will suggest a potential approach for further osteogenesis research.


Asunto(s)
Nanoestructuras , Osteogénesis , Células Endoteliales , Regeneración Ósea , Osteoclastos/metabolismo , Diferenciación Celular
13.
Biol Direct ; 19(1): 30, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654256

RESUMEN

BACKGROUND: Large bone defects pose a clinical treatment challenge; inhibiting transferrin receptor 2 (TfR2), which is involved in iron metabolism, can promote osteogenesis. Iron-based metal-organic frameworks (MOF-Fe) particles not only inhibit TfR2 but also serve as biomimetic catalysts to remove hydrogen peroxide in reactive oxygen species (ROS); excess ROS can disrupt the normal functions of osteoblasts, thereby hindering bone regeneration. This study explored the potential effects of MOF-Fe in increasing osteogenic activity and clearing ROS. METHODS: In vitro experiments were performed to investigate the osteogenic effects of MOF-Fe particles and assess their impact on cellular ROS levels. To further validate the role of MOF-Fe in promoting bone defect repair, we injected MOF-Fe suspensions into the femoral defects of SD rats and implanted MOF-Fe-containing hydrogel scaffolds in rabbit cranial defect models and observed their effects on bone healing. RESULTS: In vitro, the presence of MOF-Fe significantly increased the expression levels of osteogenesis-related genes and proteins compared to those in the control group. Additionally, compared to those in the untreated control group, the cells treated with MOF-Fe exhibited a significantly increased ability to remove hydrogen peroxide from ROS and generate oxygen and water within the physiological pH range. In vivo experiments further confirmed the positive effect of MOF-Fe in promoting bone defect repair. CONCLUSION: This study supports the application of MOF-Fe as an agent for bone regeneration, particularly for mitigating ROS and activating the bone morphogenetic protein (BMP) pathway, demonstrating its potential value.


Asunto(s)
Proteína Morfogenética Ósea 2 , Regeneración Ósea , Osteogénesis , Ratas Sprague-Dawley , Animales , Proteína Morfogenética Ósea 2/metabolismo , Proteína Morfogenética Ósea 2/genética , Ratas , Regeneración Ósea/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Conejos , Estructuras Metalorgánicas/química , Receptores de Transferrina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Peroxidasa/metabolismo , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Transducción de Señal/efectos de los fármacos , Peróxido de Hidrógeno , Masculino
14.
Bone Res ; 12(1): 23, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594236

RESUMEN

Bone tissue renewal can be enhanced through co-transplantation of bone mesenchymal stem cells (BMSCs) and vascular endothelial cells (ECs). However, there are apparent limitations in stem cell-based therapy which hinder its clinic translation. Hence, we investigated the potential of alternative stem cell substitutes for facilitating bone regeneration. In this study, we successfully prepared cell membrane vesicles (CMVs) from BMSCs and ECs. The results showed that BMSC-derived cell membrane vesicles (BMSC-CMVs) possessed membrane receptors involved in juxtacrine signaling and growth factors derived from their parental cells. EC-derived cell membrane vesicles (EC-CMVs) also contained BMP2 and VEGF derived from their parental cells. BMSC-CMVs enhanced tube formation and migration ability of hUVECs, while EC-CMVs promoted the osteogenic differentiation of hBMSCs in vitro. Using a rat skull defect model, we found that co-transplantation of BMSC-CMVs and EC-CMVs could stimulate angiogenesis and bone formation in vivo. Therefore, our research might provide an innovative and feasible approach for cell-free therapy in bone tissue regeneration.


Asunto(s)
Células Endoteliales , Osteogénesis , Ratas , Animales , Regeneración Ósea , Huesos , Membrana Celular
15.
Int J Nanomedicine ; 19: 3143-3166, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38585472

RESUMEN

Background: The ability of nanomaterials to induce osteogenic differentiation is limited, which seriously imped the repair of craniomaxillofacial bone defect. Magnetic graphene oxide (MGO) nanocomposites with the excellent physicochemical properties have great potential in bone tissue engineering. In this study, we aim to explore the craniomaxillofacial bone defect repairment effect of MGO nanocomposites and its underlying mechanism. Methods: The biocompatibility of MGO nanocomposites was verified by CCK8, live/dead staining and cytoskeleton staining. The function of MGO nanocomposites induced osteogenic differentiation of BMSCs was investigated by ALP activity detection, mineralized nodules staining, detection of osteogenic genes and proteins, and immune-histochemical staining. BMSCs with or without MGO osteogenic differentiation induction were collected and subjected to high-throughput circular ribonucleic acids (circRNAs) sequencing, and then crucial circRNA circAars was screened and identified. Bioinformatics analysis, Dual-luciferase reporter assay, RNA binding protein immunoprecipitation (RIP), fluorescence in situ hybridization (FISH) and osteogenic-related examinations were used to further explore the ability of circAars to participate in MGO nanocomposites regulation of osteogenic differentiation of BMSCs and its potential mechanism. Furthermore, critical-sized calvarial defects were constructed and were performed to verify the osteogenic differentiation induction effects and its potential mechanism induced by MGO nanocomposites. Results: We verify the good biocompatibility and osteogenic differentiation improvement effects of BMSCs mediated by MGO nanocomposites. Furthermore, a new circRNA-circAars, we find and identify, is obviously upregulated in BMSCs mediated by MGO nanocomposites. Silencing circAars could significantly decrease the osteogenic ability of MGO nanocomposites. The underlying mechanism involved circAars sponging miR-128-3p to regulate the expression of SMAD5, which played an important role in the repair craniomaxillofacial bone defects mediated by MGO nanocomposites. Conclusion: We found that MGO nanocomposites regulated osteogenic differentiation of BMSCs via the circAars/miR-128-3p/SMAD5 pathway, which provided a feasible and effective strategy for the treatment of craniomaxillofacial bone defects.


Asunto(s)
Grafito , MicroARNs , Nanocompuestos , MicroARNs/genética , Osteogénesis/genética , ARN Circular , Hibridación Fluorescente in Situ , Óxido de Magnesio , Células Cultivadas , Regeneración Ósea , Fenómenos Magnéticos , Diferenciación Celular
16.
Mol Biol Rep ; 51(1): 482, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578512

RESUMEN

BACKGROUND: Natural bone grafts are the highly preferred materials for restoring the lost bone, while being constrained of donor availability and risk of disease transmission. As a result, tissue engineering is emerging as an efficacious and competitive technique for bone repair. Bone tissue engineering (TE) scaffolds to support bone regeneration and devoid of aforesaid limitations are being vastly explored and among these the avian eggshell membrane has drawn attention for TE owing to its low immunogenicity, similarity with the extracellular matrix, and easy availability. METHODOLOGY AND RESULTS: In this study, the development of bone ingrowth support system from avian eggshell membrane derived collagen hydrolysates (Col-h) is reported. The hydrolysate, cross-linked with glutaraldehyde, was developed into hydrogels with poly-(vinyl alcohol) (PVA) by freeze-thawing and further characterized with ATR-FTIR, XRD, FESEM. The biodegradability, swelling, mechanical, anti-microbial, and biocompatibility evaluation were performed further for the suitability in bone regeneration. The presence of amide I, amide III, and -OH functional groups at 1639 cm- 1,1264 cm- 1, and 3308 cm- 1 respectively and broad peak between 16°-21° (2θ) in XRD data reinstated the composition and form. CONCLUSIONS: The maximum ratio of Col-h/PVA that produced well defined hydrogels was 50:50. Though all the hydrogel matrices alluded towards their competitive attributes and applicability towards restorative bone repair, the hydrogel with 40:60 ratios showed better mechanical strength and cell proliferation than its counterparts. The prominent E. coli growth inhibition by the hydrogel matrices was also observed, along with excellent biocompatibility with MG-63 osteoblasts. The findings indicate strongly the promising application of avian eggshell-derived Col-h in supporting bone regeneration.


Asunto(s)
Cáscara de Huevo , Escherichia coli , Animales , Colágeno/farmacología , Andamios del Tejido , Ingeniería de Tejidos/métodos , Hidrogeles , Regeneración Ósea , Amidas
17.
Shanghai Kou Qiang Yi Xue ; 33(1): 80-84, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38583030

RESUMEN

PURPOSE: To investigate the effect of endoscopy-aided non-incisional periodontal regeneration technique (NIT) in the treatment of alveolar bone angular resorption. METHODS: Thirteen patients with severe periodontitis(13 diseased teeth) were selected. All patients had alveolar bone angular resorption on adjacent surface. The patients received NIT treatment 6 weeks after periodontal primary therapy. The visualization of subgingival environment was acquired by the periodontal endoscopy. Following the removal of the subgingival plaque, calculus and intra-bony granulation tissue, bone grafting materials were placed into the intra-bony defects with the assistance of a delicate gingival protector. No flap was elevated and no sutures were applied. Probing depth (PD), gingival recession (GR), clinical attachment level (CAL), as well as radiographic parameters were evaluated at baseline and 2 years after treatment. SPSS 22.0 software package was used for data analysis. RESULTS: At 2-years follow-up, an average CAL gain of (3.65±2.10) mm (P<0.001), PD reduction of (4.42±1.66) mm (P<0.001), and minimal increase in GR of (0.38±0.87) mm (P=0.25) were observed. Alveolar bone was significantly improved at 2-years follow-up on radiographs (P<0.001). CONCLUSIONS: For angular resorption site of alveolar bone, NIT treatment can obtain good periodontal regeneration results without flap inversion.


Asunto(s)
Pérdida de Hueso Alveolar , Recesión Gingival , Periodontitis , Humanos , Estudios de Seguimiento , Bolsa Periodontal/cirugía , Periodontitis/diagnóstico por imagen , Periodontitis/cirugía , Pérdida de Hueso Alveolar/diagnóstico por imagen , Pérdida de Hueso Alveolar/cirugía , Proceso Alveolar/cirugía , Recesión Gingival/cirugía , Endoscopía , Regeneración Tisular Guiada Periodontal/métodos , Pérdida de la Inserción Periodontal/cirugía , Resultado del Tratamiento , Regeneración Ósea
18.
Int J Oral Sci ; 16(1): 33, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654018

RESUMEN

Precise orchestration of cell fate determination underlies the success of scaffold-based skeletal regeneration. Despite extensive studies on mineralized parenchymal tissue rebuilding, regenerating and maintaining undifferentiated mesenchyme within calvarial bone remain very challenging with limited advances yet. Current knowledge has evidenced the indispensability of rebuilding suture mesenchymal stem cell niches to avoid severe brain or even systematic damage. But to date, the absence of promising therapeutic biomaterials/scaffolds remains. The reason lies in the shortage of fundamental knowledge and methodological evidence to understand the cellular fate regulations of scaffolds. To address these issues, in this study, we systematically investigated the cellular fate determinations and transcriptomic mechanisms by distinct types of commonly used calvarial scaffolds. Our data elucidated the natural processes without scaffold transplantation and demonstrated how different scaffolds altered in vivo cellular responses. A feasible scaffold, polylactic acid electrospinning membrane (PLA), was next identified to precisely control mesenchymal ingrowth and self-renewal to rebuild non-osteogenic suture-like tissue at the defect center, meanwhile supporting proper osteointegration with defect bony edges. Especially, transcriptome analysis and cellular mechanisms underlying the well-orchestrated cell fate determination of PLA were deciphered. This study for the first time cellularly decoded the fate regulations of scaffolds in suture-bony composite defect healing, offering clinicians potential choices for regenerating such complicated injuries.


Asunto(s)
Regeneración Ósea , Andamios del Tejido , Transcriptoma , Animales , Regeneración Ósea/fisiología , Poliésteres , Cráneo/cirugía , Células Madre Mesenquimatosas , Mesodermo/citología , Diferenciación Celular , Ingeniería de Tejidos/métodos , Suturas Craneales , Materiales Biocompatibles
19.
Carbohydr Polym ; 332: 121933, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38431401

RESUMEN

Minimally invasive, efficient, and satisfactory treatment for irregular and lacunar bone defects is still a challenge. Alginate hydrogels serve as promising stem cell (SC) delivery systems for bone regeneration but are limited by low cellular viability, poor osteogenic differentiation, and insufficient mechanical support. Herein, we developed a BMSCs-laden mechanically reinforced bioactive sodium alginate composite hydrogel microspheres (BCHMs) system via a microfluidic method that possesses 1) a uniform size and good injectability to meet clinical bone defects with complex shapes, 2) high cellular viability maintenance and further osteogenic induction capacity, and 3) improved mechanical properties. As the main matrix, the sodium alginate hydrogel maintains the high viability of encapsulated BMSCs and efficient substance exchange. Enhanced mechanical properties and osteogenic differentiation of the BCHMs in vitro were observed with xonotlite (Ca6Si6O17(OH)2, CSH) nanowires incorporated. Furthermore, BCHMs with 12.5 % CSH were injected into rat femoral bone defects, and satisfactory in situ regeneration outcomes were observed. Overall, it is believed that BCHMs expand the application of polysaccharide science and provide a promising injectable bone substitute for minimally invasive bone repair.


Asunto(s)
Hidrogeles , Osteogénesis , Ratas , Animales , Hidrogeles/farmacología , Microesferas , Regeneración Ósea , Alginatos
20.
Carbohydr Polym ; 332: 121927, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38431420

RESUMEN

Natural bone exhibits a complex anisotropic and micro-nano hierarchical structure, more importantly, bone extracellular matrix (ECM) presents liquid crystal (LC) phase and viscoelastic characteristics, providing a unique microenvironment for guiding cell behavior and regulating osteogenesis. However, in bone tissue engineering scaffolds, the construction of bone-like ECM microenvironment with exquisite microstructure is still a great challenge. Here, we developed a novel polysaccharide LC hydrogel supported 3D printed poly(l-lactide) (PLLA) scaffold with bone-like ECM microenvironment and micro-nano aligned structure. First, we prepared a chitin whisker/chitosan polysaccharide LC precursor, and then infuse it into the pores of 3D printed PLLA scaffold, which was previously surface modified with a polydopamine layer. Next, the LC precursor was chemical cross-linked by genipin to form a hydrogel network with bone-like ECM viscoelasticity and LC phase in the scaffold. Subsequently, we performed directional freeze-casting on the composite scaffold to create oriented channels in the LC hydrogel. Finally, we soaked the composite scaffold in phytic acid to further physical cross-link the LC hydrogel through electrostatic interactions and impart antibacterial effects to the scaffold. The resultant biomimetic scaffold displays osteogenic activity, vascularization ability and antibacterial effect, and is expected to be a promising candidate for bone repair.


Asunto(s)
Quitosano , Cristales Líquidos , Animales , Quitosano/química , Hidrogeles/farmacología , Hidrogeles/metabolismo , Quitina/farmacología , Quitina/metabolismo , Vibrisas , Andamios del Tejido/química , Regeneración Ósea , Ingeniería de Tejidos , Osteogénesis , Matriz Extracelular/metabolismo , Antibacterianos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...